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Boundary Element Analysis of a

Trapezoidal Transmission Line
Brent Toland and Tatsuo Itoh, Fellow, IEEE

Abstract— A full wave analysis of a transmission line with
a trapezoidal cross section is described. The boundary element

method (BEM) is used; and by maldng a convenient choice for the

dyadic Green’s function, the method is shown to be very efficient
in comparison to appropriate alternative methods of analysis.

Further, in this application, it is shown that for electrically small

dimensions, spurious solutions are suppressed by the selection of
integral equations. Finally, the” analysis is verified by compar-
isons to calculated results from a vector finite element computer

program, and some dispersion data are presented.

I. INTRODUCTION

I N order to design more compact MMIC’S, thin film mi-

crostrip transmission lines have been investigated [1], [2].

These transmission lines have a narrow width conductor over

a thin, layered dielectric of polyimide, which substantially

reduces the circuit size. Unfortunately, these structures have

greater transmission losses than conventional MMIC’S. It is

therefore necessary to develop transmission lines which have

lower losses than the narrow width microstrip lines. Recently,

a few structures have been proposed in order to achieve this

goal [2]. These structures attempt to reduce the conductor

losses by reducing the currents on the strip conductor. This

is accomplished in [2] by using some novel transmission line

cross sections (i.e., trapezoids or V-shaped strip conductors).

We have selected for analysis the trapezoidal cross section

[see Fig. l(a)] because it gives the lowest conductor loss of

the structures investigated in [2].

Since the trapezoidal line has only recently been proposed,

there are no published full wave analyses. It is the purpose

of this paper to present one here. First, we note that the

trapezoidal geometry does not lend itself easily to most con-
ventional methods of analysis. Since this structure is similar

to the Microslab waveguide proposed in [3], a mode-matching

approach is possible, although M would require that the
slanted sides be modeled in a staircase fashion, and heavy

computation would be involved to obtain an approximate

result. Perhaps a more expedient choice would be to use

the Finite Element Method (FEM), which has become quite

popular over the past two decades. Instead, we have chosen
to use the Boundary Element Method (BEM) to analyze this

structure. This method has also had increasing popularity in
recent years [4]–[9]. The BEM has the advantage that integr~l

equations are formed only along the boundaries between
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Fig. 1. Cross section of transmission line and coordinate systems used in

BEM analysis.

different dielectric regions, as opposed to over the entire cross

section of the structure as in the FEM. This results in a

significant decrease in the number of basis functions required

to accurately solve for the propagation constant. In addition,

the BEM can handle open regions as easily as closed regions

simply by making an obvious choice for the Green’s function.

On the other hand, some care must be taken in applying the

FEM, because the FEM mesh must be terminated so that the

imposed boundary does not affect the accuracy of the solution.

This may also require increased computation, because the size

of the chosen cross section must either be large enough to

model the open structure, or some other method of mesh

termination must be chosen [10], [11]. In addition, to further

enhance the BEM for our application, the electric and magnetic

Green’s functions are chosen so that the integration over the

ground plane is not necessary. This reduces the problem to

a line integral over the contour rabCd [for the infinitely thin

strip, see Fig. l(b)]. With all this in mind, it is apparent that

the BEM possesses a computational advantage over the FEM

for this application.
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II. BOUNDARY ELEMENT ANALYSIS

We begin with the following set of integral equations which

can be found in many electromagnetic textbooks [12]:

/-
77(3’, y’) = [q%, y) x h]

T

~[v x C(T, y; $’, y’, ~)](m – J2t.Jpo

/
. [qqy) x ii] . [Ejz,y;$’,y’,p)] d=

T

/
H(z+, y’) = [E(X,y) x it]

r

(1)

o [v x -G(X, y;i, y’,p)]fi +j%%

/
. [E(X, y) x ii] . [ZQ(z, y;z’, y’,(3)] Ch. (2)

r

The integrals are taken over the path 17 which encloses the

homogeneous region “T-” (in this paper, r = 1, 2). There are

many possible choices for the electric Green’s functions R

and the magnetic Green’s functions G~ [12], but here we

choose the free space functions which obey the additional

constraints of V x Gm x n = O and G. x n = O on the

ground plane (z, y = O). Here, ii is out of the boundary. If we

apply these conditions, the following forms for the Green’s

functions can be obtained (e.g., see [13, p. 66]):

e-[ % 1~–?–~VV’ je + 2yyg~(T,R,) and

== P-ivv’l’m-2’’’0(’rR2)(3)

for the electric and magnetic Green’s functions, respectively.

The terms j. and fm are defined as fe = go (~rR) – gO(~rR,)

and fm = go (v~R) + go (T~R~ ), respectively. We use the free-
space Green’s function in cylindrical coordinates, go (T,R) =

-(j/4)H~2) (yrR), with

R = /(s – Z’)2 + (y – y’)2,

R; = /(z – 3?)2 + (y+ y’)2,

‘yT = ~~, k. = w~=. (4)

Here c. is the relative dielectric constant in region “ T’,”

11(2) (TTR) is the zero-order Hankel function of the second

ki~d, and we have assumed e–~fi” propagation.

The contour 17depends on which region is enclosed (see Fig.

1). For region 1, 17consists of the path along abed, Fabcd, and

the path along the ground plane, from point “ a“ to x ~ – co

and from x h m back to “d,” which we shall denote as rgP1.
In region 1, the argument of the Hankel function becomes

imaginary, and hence as R + m, there is no contribution

from the path 17Q. This is the advantage of the BEM for the

open structure. The contour for region 2 is over rabcd (we

are assuming an infinitely thin strip) and the ground plane

path in region 2, 17gPz. Since the integrands are all zero on

the ground plane, the integrals along this part of the contour

can be eliminated, leaving only the contribution from 17a~Cd.

By moving the observation point (x’, y’) to the boundary and

performing several manipulations, these equations can be cast

in the following form:

;Mt(z’, y’)

/[ 1t?f..— .—

[ Wwxy)

+1’+7i:(:y~d”
(5)

;Jt(x’, y’)

= l[”%lJ’(’y)+[-*~lM’(xly)

+ [’”’F’fmlMz(xy)dr
(6)
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+—
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(8)

In these equations, Mt and Mz are the tangential and axial

directed components of the magnetic current (~= E x ii) on

the boundary, and Jt and Jz are the corresponding electric

currents (~ = ~ x ii). These equations are valid on the

boundary of each respected regiori, and can be combined and

solved for the propagation constant as a function of frequency.

The equations are made discrete by dividing the contour into

segments, and then the unknown sources are expanded as

piecewise constant basis functions. For example, for piecewise

constant basis functions, we would have the sequence Mt =

[M,(1), MJ2), $0+, kf~(lV)], where there are N segments on

the entire boundary r.b.d, and Mt (j) is the value of Mt at

the center of segment “j.” We test the equations by point

matching, and we obtain the following, for i = 1,”-”, ~:

+ft(i)=~ K:;%,(j)+ ~ KyMz(j)
‘j=l j=l
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Fig.2. Comparison of BEMto FEM. Calculation ofpropagation constant vs.
frequency fortrapezoid withdimensions:lt’, =25~m,h =10pm,0=35°
and e, = 3.3.

+ = f Lyvl-t(j) + -f Lymz-.(j)
j=l j’=1

+ SL$~)Jt(~)+S~$~)Jz(,j)
j=l ‘j=l
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+ ‘f Q\;)J(t) + ‘f Q:;) J(.7)
j=l j=l

(lo)

(11)

(12)

where K~~, L~~, etc., represent integrals over each subdomain.

From these equations, a complex matrix ~(~) of dimension

4N by 4N is formed, with the unknown boundary sources

represented as the vector T

Z=[lllt(l ),... ,iW,(N), iWz(l),..., Llz(N),,l,(l),

. . ..~t(lV). ~Z(l),..., ~%(N)]. (13)

This matrix is then solved for the real eigenvalues which

correspond to the allowed propagation constants P, i.e.,

~(@ . z = @~ D = det[~(~)] = O. (14)

This last step is accomplished by performing a root search for

kl < ~ < kz. To avoid a complex root search for a real ~, we

instead search both real and imaginary parts of D separately.

We have found that for the dominant mode, a physical ~ will

be a root of both parts to within some numerical error. Roots

that are not common to both parts of D are not solutions of

(14) and are discarded.

4

10-’ 10° 10’ ltY
Frequency (GHz)

Fig. 3. Calculated normalized propagation constant vs. frequency for the
dominant mode of a trapezoid with dimensions: W, = 2,5 mm, H = 1.0 mm,

.5 = 35°, and er = 3.3.
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Fig. 4. Comparison of calculated normalized propagation constant versus
frequency for the dominant mode of four trapezoids with dimensions:
H = l. Omm, cr = 3.3, and (a) 0 = 0,0, IJV, = 2.5mm; (b)
6 = 15.0, W. = 2.5mm: (c) 8 = 45,0, W’s = 2.35 mm; (d)
6’ = 850, L\’, = 2.52 mm.

Each of equations (5)–(8) [or (9)–(12)] hold for regions

1 or 2. The tangential electric and magnetic fields must be

continuous across the dielectric boundaries (i.e., segments ab

and cd). This implies that Mt, kl,, Jt, and J. are continuous,

and therefore we have only four unknowns on these bound-
aries. Along the perfectly conducting strip, Jt and J= are not

continuous (iil x ml # fi2 x ~2 ), but since il~t, ill, are known

(= O on the strip), we again have only four unknowns on this
portion of the boundary. Hence, along the entire boundary we

have four unknowns but we have eight equations. We therefore

have several possible combinations that can be used to solve

the eigenvahte problem posed in (14). For electrically small

structures, we have found that only (11) and (12) produce

solutions free of spurious modes. Note that a spurious mode

is a root which is common to both real and imaginary parts

of D [i.e., a solution of (14)], which does not represent a

physical mode. It is possible that this is somehow due to
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the fact that the dominant currents of this structure should

be the ikfz, J. components (which correspond to Et and Ht

respectively), not the illt, Jt components (which correspond

to E. and H.). For electrically larger structures (i.e., higher

frequencies), all pairwise combinations of (9)-(12) worked

equally well, although occasionally spurious solutions were

produced. We should note that spurious solutions are also

produced when all four equations are combined and solved as

in [7]. Fortunately, we could easily identify which solutions are

spurious and which is the dominant mode by simply comparing

to the quasi-static solution. Obviously, the identification of

higher order modes is not as simple.

Once ~ has been determined, the unknown vector E is found

from (14) by using singular value decomposition. We therefore

obtain the electric and magnetic currents along the boundary.

We can then use these in (5)-(8) to obtain the fields anywhere

in the cross section by moving the observation point (x’, y’) off

of the boundary and performing a few simple manipulations.

A more general and elaborate description of this procedure

can be found in [14] and [15].

III. RESULTS

Since this structure has only been recently proposed, there

are no results in the literature for which comparisons can

be made. Fortunately, we do have calculated design data

from a vector FEM program. In Fig. 2 we compare results

for ,6 and the characteristic impedance for a trapezoid with

WS = 25 pm, H = 10pm, 0 = 35°, and G. = 3.3 (polyamide).

Although the results for ~ are indistinguishable at the scale

shown, there is a 0.670 difference between calculations. We

attribute this difference to inaccuracies of both methods in

modeling the edge condition. It is also evident from these

curves that the propagating mode is quasi-TEM over the

frequency range shown.

In Fig. 3 we plot the normalized propagation constant @/ko

versus frequency of the dominant mode for a trapezoid with

W, = 2.5mm, H = l.Omm, O = 35°, and e, = 3.3. Since

this structure is electrically larger, “the effects of dispersion

are evident. In Fig. 4 we compare ~/kO versus frequency

for the dominant mode of four trapezoids with angles of

8 = 0.0,0 = 15.0,0 = 45.0, and 6 = 85.0 degrees, and strip

widths of W, = 2.5,2.5,2.35, and 2.52 mm, respectively.

All have H = 1.0 mm, and the data for @ = 0.0 were

obtained by using a spectral domain program, As (3decreases,

the proportion of dielectric to air seen by the dominant mode

increases at a given frequency and hence the higher values

of ~.

IV. CONCLUSION

We have demonstrated an efficient full wave analysis of a

trapezoidal transmission line by the boundary element method.

We use an expedient choice of Green’s function to reduce

the domain of the requisite integral equations, and therefore

substantially reduce the amount of computation necessary

to solve for the propagation constant. We have found that,

in general, all of the integral equations used give spurious

solutions, although in some cases they do not appear. In this

application, we can readily identify the correct dominant mode,

and we have presented data which compare the dispersive

properties of a few of these transmission lines.
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