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Boundary Element Analysis of a
Trapezoidal Transmission Line

Brent Toland and Tatsuo Itoh, Fellow, IEEE

Abstract— A full wave analysis of a transmission line with
a trapezoidal cross section is described. The boundary element
method (BEM) is used; and by making a convenient choice for the
dyadic Green’s function, the methed is shown to be very efficient
in comparison to appropriate alternative methods of analysis.
Further, in this application, it is shown that for electrically small
dimensions, spurious solutions are suppressed by the selection of
integral equations. Finally, the analysis is verified by compar-
isons to calculated results from a vector finite element computer
program, and some dispersion data are presented.

1. INTRODUCTION

N order to design more compact MMIC’s, thin film mi-

crostrip transmission lines have been investigated [1], [2].
These transmission lines have a narrow width conductor over
a thin, layered dielectric of polyimide, which substantially
reduces the circuit size. Unfortunately, these structures have
greater transmission losses than conventional MMIC’s. Tt is
therefore necessary to develop transmission lines which have
lower losses than the narrow width microstrip lines. Recently,
a few structures have been proposed in order to achieve this
goal [2]. These structures attempt to reduce the conductor
losses by reducing the currents on the strip conductor. This
is accomplished in [2] by using some novel transmission line
cross sections (i.e., trapezoids or V-shaped strip conductors).
We have selected for analysis the trapezoidal cross section
[see Fig. 1(a)] because it gives the lowest conductor loss of
the structures investigated in [2].

Since the trapezoidal line has only recently been proposed,
there are no published full wave analyses. It is the purpose
of this paper to present one here. First, we note that the
trapezoidal geometry does not lend itself easily to most con-
ventional methods of analysis. Since this structure is similar
to the Microslab waveguide proposed in [3], a mode-matching
approach is possible, although this would require that the
slanted sides be modeled in a staircase fashion, and heavy
computation would be involved to obtain an approximate
result. Perhaps a more expedient choice would be to use
the Finite Element Method (FEM), which has become quite
popular over the past two decades. Instead, we have chosen
to use the Boundary Element Method (BEM) to analyze this
structure. This method has also had increasing popularity in
recent years [4]-[9]. The BEM has the advantage that integral
equations are formed only along the boundaries between
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Fig. 1. Cross section of transmission line and coordinate systems used in

BEM analysis.

different dielectric regions, as opposed to over the entire cross
section of the structure as in the FEM. This results in a
significant decrease in the number of basis functions required
to accurately solve for the propagation constant. In addition,
the BEM can handle open regions as easily as closed regions
simply by making an obvious choice for the Green’s function.
On the other hand, some care must be taken in applying the
FEM, because the FEM mesh must be terminated so that the
imposed boundary does not affect the accuracy of the solution.
This may also require incteased computation, because the size
of the chosen cross section must either be large enough to
model the open structure, or some other method of mesh
termination must be chosen [10], [11]. In addition, to further
enhance the BEM for our application, the electric and magnetic
Green’s functions are chosen so that the integration over the
ground plane is not necessary. This reduces the problem to
a line integral over the contour I'yp.q [for the infinitely thin
strip, see Fig. 1(b)]. With all this in mind, it is apparent that
the BEM possesses a computational advantage over the FEM
for this application.
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II. BOUNDARY ELEMENT ANALYSIS

We begin with the following set of integral equations which
can be found in many electromagnetics textbooks [12]:

B@.y) = [[Blo.0) x il
V% Gela, 30",y B)] dF — gt
[ i) o o B
1) = [ x il
[V % Gz, 32"y, B)] dF + jwere,
-/T[E(w,y) X ] - [C(, y30', 4/, B)] dF. (2)

The integrals are taken over the path I' which encloses the
homogeneous region “r” (in this paper, » = 1,2). There are
many possible choices for the electric Green’s functions G.
and the magnetic Green’s functions G,, [12], but here we
choose the free space functions which obey the additional
constraints of V X G,, x = 0 and G, x #» = 0 on the
ground plane (z,y = 0). Here, # is out of the boundary. If we
apply these conditions, the following forms for the Green’s
functions can be obtained (e.g., see [13, p. 66]):

GT = [I - pVV } fe +2499,(vR,) and

G, = {? - ivvl] Jm — 2393;90('77‘Rz) 3

for the electric and magnetic Green’s functions, respectively.
The terms f, and f,,, are defined as f, = go(7+R) — go (1 R,)
and fo, = go(7-R) + go (- R;), respectively. We use the free-
space Green’s function in cylindrical coordmates go(7rR) =

~(/4)HP (v, R), with

R=y/(z—2')*+
R =y(z—2)?+

(y—v)%
(y+v)?,

=+/k2 - 32, kr = wy\/Bokokr- €]

Here €, is the relative dielectric constant in region “ 7,
HP (7R) is the zero-order Hankel function of the second
kind, and we have assumed e~7#% propagation.

The contour I' depends on which region is enclosed (see Fig.
1). For region 1, I" consists of the path along abed, Igp0q, and
the path along the ground plane, from point “ ¢” to z — —o0
and from z — oo back to “d,” which we shall denote as I'gp;.
In region 1, the argument of the Hankel function becomes
imaginary, and hence as R — oo, there is no contribution
from the path I',. This is the advantage of the BEM for the
open structure. The contour for region 2 is over I'gped (we
are assuming an infinitely thin strip) and the ground plane
path in region 2, I'gps. Since the integrands are all zero on
the ground plane, the integrals along this part of the contour
can be eliminated, leaving only the contribution from I'gpcq.
By moving the observation point {(z’,y’) to the boundary and
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performing several manipulations, these equations can be cast
in the following form:

1
§Mt($', y')
wﬂo/g 8fe

:/T[—%fe]Mt(x,y)+[— W2 at]Jt(w,y)

+[ odard fe] J.(z,y) dT )

S y)
wa‘EOﬂ afm

- [ %
+ [%fm]%(x,y) dr ©

1
EMZ(xlv y,)

- (|15 2{5 -2 o)

]Mt(fﬂ y)

[_Ofm
+ WY :|M (z,y)dl
jwpo [ B2 8 O fm
" /[ 2 {k—,%atat' + 3n3n’}:|Jt($’y)
B dfe
- loe Bt’] (z,y)dT )

1
§Jz(x/1y )

= [[Z2{3 - S e

+[ Jﬂ . (z,y) dl

JWerko /82 82fm (92fe
i / { 72 {ﬁ ator anan/}]Mt(m,y)
|: e afm]M( ,y)dl’ (8)

wy, O

In these equations, M; and M, are the tangential and axial
directed components of the magnetic current (M = E x #2) on
the boundary, and J; and J, are the corresponding electric
currents (J = H x ). These equations are valid on the
boundary of each respected region, and can be combined and
solved for the propagation constant as a function of frequency.
The equations are made discrete by dividing the contour into
segments, and then the unknown sources are expanded as
piecewise constant basis functions. For example, for piecewise
constant basis functions, we would have the sequence M; =
[M(1), My(2), -+, My(N)], where there are N segments on
the entire boundary I’ abed; and M,(j) is the value of M; at
the center of segment “j.” We test the cquatlons by point
matching, and we obtain the following, for¢ = 1,---, N:

N
> KD M) +ZK(2)M ()
j=1

1 ,
§Mt(7’) =

- N B
+ KPR + ZK(4)J )
7=1
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Fig. 2. Comparison of BEM to FEM. Calculation of propagation constant vs.
frequency for trapezoid with dimensions: ¥ = 25 gm, h = 10 pym, § = 35°

and e, = 3.3.
N
—Jy(i) = ZL(”M ZL@)M
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where K, fj), L( .5 » €tc., represent integrals over each subdomain.
From these equations, a complex matrix A(ﬁ) of dimension
4N by 4N is formed, with the unknown boundary sources

represented as the vector T

T = [Mt(l)a‘ e aMt(N)aMZ(1>>' Ty
s Je(N), Jo(1), -

MZ(N)7 Jt(]-))
(V). 13)

This matrix is then solved for the real eigenvalues which
correspond to the allowed propagation constants 3, i.e.,

||

(B)-F=0= D = det[A(3)] = (14)

This last step is accomplished by performing a root search for
k1 < B < ka. To avoid a complex root search for a real 3, we
instead search both real and imaginary parts of I separately.
We have found that for the dominant mode, a physical 8 will
be a root of both parts to within some numerical error. Roots
that are not common to both parts of D are not solutions of
(14) and are discarded.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 6/7, JUNE/JULY 1993

g
<}

full-wave —
quasi—static —

- -
o ©
IS SO TN N TR TN T N N T U NS TOU T O N N T 1

-
~

normalized propagation constant
-3

1.5

10° 10! 10
Frequency (GHz)

10™

Fig. 3. Calculated normalized propagation constant vs. frequency for the
dominant mode of a trapezoid with dimensions: W = 2.5 mm, H = 1.0 mm,
6 = 35°, and ¢, = 3.3.
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Fig. 4. Comparison of calculated normalized propagation constant versus
frequency for the dominant mode of four trapezoids with dimensions:

H = 10mm,e, = 33, and (@) § = 0.0,W, = 2.5mm; (b)
6 = 150,Ws; = 2.5mm: (¢) § = 450,W, = 2.35mm; (d)
6 = 850,1V, = 2.52mm.

Each of equations (5)—~(8) [or (9)—(12)] hold for regions
1 or 2. The tangential electric and magnetic fields must be
continuous across the dielectric boundaries (i.e., segments ab
and cd). This implies that My, M., J;, and J, are continuous,
and therefore we have only four unknowns on these bound-
arics. Along the perfectly conducting strip, J; and J, are not
continuous (fi; x H1 # iy x H), but since M,, M., are known
(= 0 on the strip), we again have only four unknowns on this
portion of the boundary. Hence, along the entire boundary we
have four unknowns but we have eight equations. We therefore
have several possible combinations that can be used to solve
the eigenvalue problem posed in (14). For electrically small
structures, we have found that only (11) and (12) produce
solutions free of spurious modes. Note that a spurious mode
is a root which is common to both real and imaginary parts
of D [i.e., a solution of (14)], which does not represent a
physical mode. It is possible that this is somehow due to
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the fact that the dominant currents of this structure should
be the M., J, components (which correspond to F; and H;

respectively), not the M;, J, components (which correspond

to E, and H,). For electrically larger structures (i.e., higher
frequencies), all pairwise combinations of (9)—(12) worked
equally well, although occasionally spurious solutions were
produced. We should note that spurious solutions are also
produced when all four equations are combined and solved as
in [7]. Fortunately, we could easily identify which solutions are
spurious and which is the dominant mode by simply comparing
to the quasi-static solution. Obviously, the identification of
" higher order modes is not as simple.

Once (3 has been determined, the unknown vector % is found
from (14) by using singular value decomposition. We therefore
obtain the electric and magnetic currents along the boundary.
We can then use these in (5)—(8) to obtain the fields anywhere
in the cross section by moving the observation point (z,3’) off
of the boundary and performing a few simple manipulations.
A more general and elaborate description of this procedure
can be found in [14] and [15].

III. RESULTS

Since this structure has only been recently proposed, there
are no results in the literature for which comparisons can
be made. Fortunately, we do have calculated design data
from a vector FEM program. In Fig. 2 we compare results
for 8 and the characteristic impedance for a trapezoid with
W, = 25 ym, H = 10 um, § = 35°, and €, = 3.3 (polyimide).
Although the results for § are indistinguishable at the scale
shown, there is a 0.6% difference between calculations. We
attribute this difference to inaccuracies of both methods in
modeling the edge condition. It is also evident from these
curves that the propagating mode is quasi-TEM over the
frequency range shown.

In Fig. 3 we plot the normalized propagation constant 3/k,

versus frequency of the dominant mode for a trapezoid with

W, = 25mm, H = 1.0mm,# = 35°, and ¢, = 3.3. Since
this structure is electrically larger, ‘the effects of dispersion
are evident. In Fig. 4 we compare 3/k, versus frequency
for the dominant mode of four trapezoids with angles of
6 =0.0,0 =15.0,0 = 45.0, and § = 85.0 degrees, and strip
widths of W, = 2.5,2.5,2.35, and 2.52 mm, respectively.
- All have H =
obtained by using a spectral domain program. As 6 decreases,
the proportion of dielectric to air seen by the dominant mode
increases at a given frequency and hence the higher values

of 3.

IV. CONCLUSION

We have demonstrated an efficient full wave analysis of a
trapezoidal transmission line by the boundary element method.
We use an expedient choice of Green’s function to reduce
the domain of the requisite integral equations, and therefore
substantially reduce the amount of computation necessary
to solve for the propagation constant. We have found that,
in general, all of the integral equations used give spurious

(10]

1.0 mm, and the data for # = 0.0 were’
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solutions, although in some cases they do not appear. In this
application, we can readily identify the correct dominant mode,
and we have presénted data which compare the dispersive
propetties of a few of these transmission lines.
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